BREVET DE TECHNICIEN SUPÉRIEUR

MOTEURS À COMBUSTION INTERNE SESSION 2011

ÉTUDE DES MOTEURS U52 – ÉTUDE ET ANALYSE DES MOTEURS

DURÉE: 3 HEURES - COEFFICIENT: 3

Documents et matériels autorisés : Aucun document autre que le sujet n'est autorisé.

Moyens de calculs autorisés :
Calculatrice électronique de poche, y compris calculatrice
programmable et
alphanumérique à fonctionnement autonome, non imprimante,
conformément à la circulaire N° 86.228 du 26 Juillet 1986.

Dès que le sujet vous est remis, assurez-vous qu'il soit complet.

Le sujet comporte 15 pages numérotées de la façon suivante :

- ✓ Texte du sujet : 5 pages numérotées de 2 à 6.
- ✓ Dossier technique : 7 pages numérotées de 7 à 13, et référencées par DT1, DT2...
 - Le DT7 contient les notations et constantes utilisées.
- ✓ <u>Documents réponses</u> 2 pages numérotées de 14 à 15 (à rendre obligatoirement même non complétées) et référencées : *DR1*, et *DR2*.

CODE ÉPRE	UVE :	EXAMEN	SPÉCIALITÉ :			
1106MOE5EAM		BREVET DE TECHNICIEN SUPÉRIEUR MOTEURS À COMBUSTION INT				
SESSION: 2011	SUJET	ÉPREUVE : ÉTU U52 – ÉTUDE ET AN				
Durée : 3h	C	oefficient : 3 SUJE	T N°04ED09	15 pages		

Système « SCR »

PRÉSENTATION

1. Contexte

- La réglementation en matière de pollution atmosphérique impose des normes d'émission toujours plus sévères. Par ailleurs, les conditions économiques (prix des carburants) ainsi que la « pression écologique » (effet de serre) demandent une réduction de l'émission de CO₂.
- Ainsi les constructeurs doivent-ils optimiser le fonctionnement des moteurs selon cette double contrainte : réduire les polluants et améliorer la consommation.
- En matière de transport routier, la norme actuelle est l'EURO 5 (octobre 2009). La difficulté majeure pour les constructeurs est le respect des émissions de NOx. Les constructeurs ont du faire des choix stratégiques pour les techniques de dépollution de façon à réduire les NOx sans pénaliser d'autres aspects.

2. Sujet

- On propose donc d'étudier un système de réduction des oxydes d'azote, communément appelé SCR (Selective Catalist Reduction). Ce système est en service chez plusieurs constructeurs de poids-lourds, et même sur un modèle de voiture particulière.
- Le sujet comporte 4 parties indépendantes :
 - ✓ Partie 1 : analyse du contexte.
 - ✓ Partie 2 : aspects théoriques.
 - ✓ Partie 3 : analyse d'une solution technologique.
 - ✓ Partie 4 : analyse des performances du système sur un cycle ESC.
- Repérage des éléments du sujet :
 - ✓ <u>Texte du sujet</u>: 5 pages numérotées de 2 à 6
 - ✓ <u>Dossier technique</u>: 7 pages numérotées de 7 à 13, et référencées par *DT1*, *DT2*...
 - Le DT7 contient les notations et constantes utilisées.
 - Le symbole ① indique que le document est donné à titre informatif, et qu'il n'est pas indispensable à la réalisation du sujet.
 - ✓ <u>Documents réponses</u> (à rendre obligatoirement même non complétés), 2 pages numérotées de 14 à 15 et référencées : *DR1* et *DR2*.

Conseils:

- ✓ D'une façon générale, pour chaque question ou groupe de questions, bien lire les indications concernant :
 - Les documents à consulter et éventuellement à compléter,
 - Les hypothèses et autres données,
 - Les notations utilisées.
- ✓ Prendre soin d'indiquer les formules littérales et les unités employées.
- Temps indicatifs conseillés : 10 ' de lecture globale du sujet et :
 - ✓ Partie 1: 10 minutes

✓ Partie 3:60 minutes

✓ Partie 2:50 minutes

✓ Partie 4 : 50 minutes.

PRRTIE I : RARLUJE DU CONTENTE

1. Analyse des normes - potentiel des stratégies

- ✓ Voir tableau 1 et figure 1 du DT1, ainsi que figure 6 du DT4 pour la définition de l'efficacité.
- 1.1. On fait l'hypothèse d'une efficacité globale de 80% pour le système de réduction des NOx (SCR). Quelle est alors la valeur d'émission « brute » de NOx limite, c'est-à-dire avant traitement, pour pouvoir atteindre la valeur de la norme EURO 5 (2 g.kW⁻¹.h⁻¹) ?
- 1.2. Commenter, en quelques lignes, les 2 stratégies possibles, à l'heure actuelle, pour parvenir à EURO 5 (comparer en particulier l'aspect rendement moteur / production de NOx) :
 - ✓ Stratégie 1 : du point 0 au point 3 via le point 1
 - ✓ Stratégie 2 : du *point 0* au *point 3* via le *point 2*.

PARTIE 2 : POINT DE VUE THEORIQUE

2. Calcul du débit d'additif théorique (ADBLUE®)

- √ Voir DT2 et DT7 pour les grandeurs utiles.
- ✓ Hypothèses et données :
 - Les réactions prépondérantes et donc retenues pour le modèle de calcul sont les réactions notées (1), (2) et (4) (voir DT2)
 - L' ADBLUE® est une solution aqueuse d'urée à 32,5% (en masse).
 - Le rapport de NO₂ dans les NO_x totaux est : $\frac{NO_2}{NO_x} = 0, 1$ (en moles).
- 2.1. A partir de la réaction (1), déterminer le facteur K_{u_NH3} : masse d'urée nécessaire pour produire un gramme d'ammoniac.
- 2.2. A partir de la réaction (2), déterminer la masse d'urée $_{mu_NO}$ nécessaire pour réduire 1 mole de NO.
- 2.3. A partir de la réaction (4), déterminer la masse d'urée m_{u_NO2} nécessaire pour réduire 1 mole de NO2
- 2.4. Calcul du facteur K_{NOx} : masse d'ADBLUE[®] nécessaire pour réduire 1 g de NOx :
 - ✓ Par souci de clarté, on fait le calcul pour 10 moles de NOx (dans les proportions de 10% (en moles) de NO₂).
 - 2.4.1. Déterminer la masse d'urée m_u nécessaire pour les 10 moles de NOx.
 - 2.4.2.En déduire le ratio masse d'urée / masse de NOx, puis le facteur K_{NOx} : masse d'ADBLUE[®] théorique nécessaire pour convertir 1 g de NOx, en sachant que l'on a 32,5 g d'urée pour 100 g d'ADBLUE[®].
 - 2.4.3.En pratique le K_{NOx} utilisé est de 2,07.
 - Vérifier que cette valeur correspond à l'hypothèse $M_{NOX} = M_{NO2}$.
 - Justifier la plausibilité de cette hypothèse par l'utilisation d'un précatalyseur d'oxydation (voir DT2).

PARTIE 2 : ANALYSE D'UNE SOLUTION TECHNOLOGIQUE

- 3. Etude de la consigne de débit d'ADBLUE®
 - √ Voir DT4 (figures 5 et 6) et DR1 pour les valeurs numériques.
 - √ Hypothèses et données :
 - le facteur K_{NOx} : masse d'ADBLUE[®] théorique nécessaire pour convertir 1 g de NOx est : $K_{NOx} = 2,07$
 - On donne DT4 (figure 6) la stratégie simplifiée du calcul de la consigne de débit d'ADBLUE[®].
 - On donne, document réponse DR1, le résultat d'un essai réalisé sur un moteur équipant un Poids-Lourd à N = 1800 tr.min⁻¹.
 - On s'intéresse au point P_{eff} = 240 kW.
 - L'allocation NOx sur ce point est de 2 g.kW⁻¹.h⁻¹.
 - 3.1. Exprimer la relation littérale, à partir du schéma-bloc (figure 6), le débit de consigne $d'ADBLUE^{\otimes}$ Q_{adblue} en fonction :
 - de l'efficacité cible E_{cible} (%)
 - et du débit de NOx produit par le moteur Q_{NOX_mot} . On considèrera que l'efficacité maximale potentielle est supérieure à l'efficacité cible.
 - 3.2. Déterminer, pour le point de fonctionnement, (N = 1800 tr.min⁻¹, P_{eff} = 240 kW),
 - le débit de NOx cible $Q_{NOxcible}$ en g.h⁻¹. (Ceci revient à exprimer la fonction $Z = Q_{NOxcible}$).
 - le débit de NOx produit par le moteur : Q_{NOX mot} en g.h⁻¹.
 - 3.3. En déduire, pour le point de fonctionnement, l'efficacité cible E_{cible} (%)
 - 3.4. Déterminer enfin le débit d'ADBLUE® de consigne Qadblue en g.h-1.
 - tracer le point sur le graphique du DR1.
 - 3.5. Justifier, par un argument, la fonction « MINI » de la stratégie de calcul du débit de consigne.
- 4. Choix de la vanne de dosage
 - ✓ Voir document DT4 figure 5.
 - ✓ Hypothèses et données :
 - La vanne de dosage est pilotée par un signal de type « PWM » (Pulse Width Modulation ou RCO) à fréquence constante.
 - Le « temps mort » est négligé en raison de la fréquence de commande faible (4 Hz).
 - ✓ Cahier des Charges
 - Débit minimum d'ADBLUE®: 3300 g.h⁻¹ (à 240 kW avec une efficacité maximale de 90%).
 - Rapport de commande PWM (ou RCO) pour 3300 g.h⁻¹ > 50%.
 - 4.1. Justifier le temps de commande maximal des vannes de 0,25 seconde.
 - 4.2. Choisir une vanne répondant au cahier des charges. Argumenter le choix.

Partie 4 : anglyje dej performancej jur un cycle ejc

5. Performances du système SCR

- ✓ Voir documents DT3, DT5, DT6, DT7 et DR3.
- √ Hypothèses et données :
 - Gaz parfait
 - On s'intéresse uniquement au cycle ESC : on veut analyser les résultats de l'utilisation du système SCR sur le cycle « 13 modes ».
 - On prendra un coefficient d'humidité K_H = 1.
 - Les NOx sont assimilés au NO₂ : $M_{NOX} = M_{NO2}$
 - La masse molaire des gaz d'échappement est assimilée à celle de l'air : $M_{echap} = 29 \text{ g.mol}^{-1}$
 - On rappelle que :
 - la concentration des NOx peut se définir à partir de sa pression partielle P_{p_NOx} et de la pression totale $P_t: [NOx] = \frac{P_{p_NOx}}{P_t}$ (ici en valeur « vraie », c'est à dire ni en % ni en ppm).
 - Les gaz occupent naturellement tout l'espace disponible; dans un mélange de gaz parfaits, le volume occupé par l'un des composants est donc le volume total (chacun des gaz occupe tout le volume mis à disposition).

5.1. Calcul des émissions sur un point de cycle

5.1.1. exprimer la masse volumique de NOx ρ_{NOx} en fonction :

- ✓ de la masse molaire des NOx : M_{NOx}
- \checkmark et de la pression partielle des NOx dans les gaz d'échappement : $P_{p NOx}$

5.1.2. exprimer la masse volumique de gaz d'échappement $ho_{gaz_{echap}}$ en fonction :

- \checkmark de la masse molaire des gaz d'échappement : M_{echap}
- \checkmark et de la pression totale P_t

5.1.3. exprimer le débit de gaz d'échappement Qm_{gaz_echap} en fonction :

- $\checkmark~$ de la masse volumique des gaz d'échappement : $ho_{gaz_{echap}}$
- $\checkmark~$ et du débit volumique échappement $\mathit{Qv}_{\mathit{gaz_echap}}$

5.1.4. Exprimer le débit massique de NOx Q_{NOx} en fonction :

- ✓ de la masse volumique des NOx : ρ_{NOx}
- $\checkmark~$ et du débit volumique échappement $\mathit{Qv}_{\mathit{gaz_echap}}$

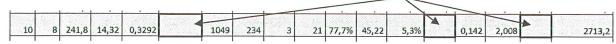
5.1.5. en déduire la relation donnant le débit de NOx Q_{NOx} en fonction :

- \checkmark des masses molaires M_{NOx} et M_{echap} ,
- \checkmark De la concentration [NOx],

 \checkmark Et du débit massique d'échappement $Qm_{qaz\ echap}$.

Indiquer clairement les unités!

5.2. application numérique


5.2.1.calcul du mode 10

✓ pour cette question, on pourra utiliser la formule déterminée précédemment ou la formule donnée par la norme (voir *DT3*) :

$$Q_{NOx}$$
 (g.h⁻¹) = 1,587.10⁻⁶ × [NOx] × KH × Qm $_{gaz_echap}$ (g.h⁻¹)

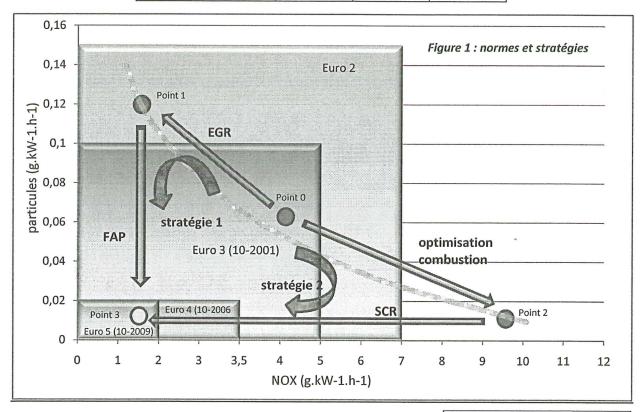
(Voir DT3 pour modalités d'utilisation de la formule).

- a calculer les éléments manquants pour le mode 10 :
 - le débit échappement en g.h⁻¹
 - le débit de NOx pondéré en g.h⁻¹
 - la puissance effective pondérée en kW.
- compléter le DR3, ligne « mode 10 », cases grisées et entourées.

5.2.2. calcul des émissions de NOx sur le cycle complet

- calculer les éléments manquants pour l'ensemble du cycle :
 - la somme des débits de NOx pondérés
 - la somme des puissances pondérées
 - l'émission de NOx pour le cycle en g.kW⁻¹.h⁻¹
- compléter les cases correspondantes du tableau (cases grisées et entourées) du DR3.

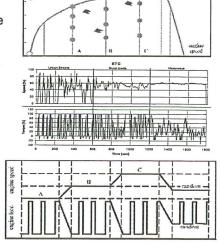
Somme 1,3 12,1 emissions / cycle (g.kW-1.h-1) 0,011 0,100


5.2.3. Conclure:

- ✓ l'essai ESC « passe -t-il » la norme EURO5 (NOx, HC, CO) ?
- ✓ le débit d'ADBLUE® réel est-il cohérent avec les calculs (cas du mode 10) ?

Document Technique of I

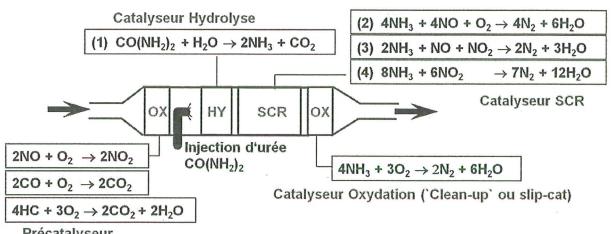
Lemao


<u>Tableau 1</u>	EURO 3	EURO 4	EURO 5
particules (g.kW ¹ .h ⁻¹)	0,1	0,02	0,02
Nox (g.kW ⁻¹ .h ⁻¹)	5	3,5	2
HC (g.kW ⁻¹ .h ⁻¹)	0,66	0,66	0,46
CO (g.kW ⁻¹ .h ⁻¹)	2,1	1,5	1,5

- Les normes s'appliquent sur 3 types d'essais normalisés :
 - ✓ le cycle ESC (<u>European Steady State Test Cycle</u>). Cycle 13 modes (régime charge) stabilisés.

Le sujet porte sur cet essai.

le cycle ETC (<u>European Transcient Test Cycle</u>). Cycle type routier, 1/3 urbain, 1/3 route, 1/3 autoroute).



Le test ELR (*E*uropean <u>L</u>oad <u>R</u>esponse Test). Cycle simplifié de réponse en transitoires de fortes charges.

Document Technique of 2

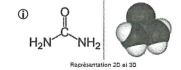
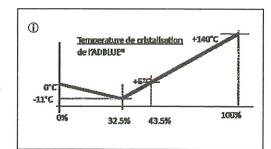

add diagoly.

Figure 2 : théorie SCR



Précatalyseur

- Le principe SCR (Selective Catalist Reduction) est d'utiliser un puissant agent réducteur pour réagir avec les oxydes d'azote. Le réducteur est l'ammoniac NH₃, et les principales réactions dans le SCR sont données sur le schéma ci-dessus :
 - ✓ Réaction (2) : réaction principale
 - ✓ Réaction (3) : réaction rapide
 - ✓ Réaction (4) : réaction lente.

- Pour activer les réactions, des catalyseurs sont nécessaires :
 - ✓ Dioxyde de titane (TiO₂)
 - ✓ Trioxyde de tungstène (WO₃)
 - ✓ Dioxyde de silicium (SiO₂)...
- En pratique, l'ammoniac n'est pas utilisé directement, mais sous forme d'urée CO(NH₂)₂, elle-même diluée dans de l'eau à 32,5% en masse. Ce liquide est connu sous le nom commercial ADBLUE®. Pour « extraire » l'ammoniac de l'ADBLUE®, il faut différentes opérations :

- ✓ Evaporation de l'eau (thermolyse)
- Hydrolyse: réaction (1).
- En Diesel, le rapport NO₂/NOx varie de 0 à 30% environ. Pour favoriser la réaction rapide (3), on peut insérer en amont du SCR un pré-catalyseur d'oxydation (repéré OX), de façon à augmenter la proportion de NO₂.
- Enfin, pour éviter des rejets trop importants d'ammoniac (gaz toxique), un post-catalyseur d'oxydation (dénommé « clean-up ») peut être placé en aval du SCR. Il permet l'élimination des NH3 non utilisés pour les NOx.

Downgot Technique of 9

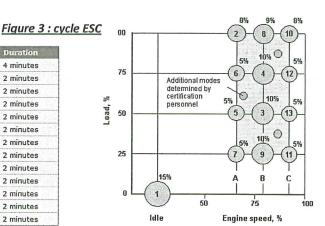

CACIE ELC

Tableau 2 : cycle ESC

13

ESC Test Modes Load Low idle 15 100 2 minutes B 50 10 2 minutes B 75 10 2 minutes 50 2 minutes 75 2 minutes A 25 2 minutes 8 100 9 2 minutes 25 10 2 minutes 10 C 100 8 2 minutes 25 C 75 12 5 2 minutes

50

Calculs des débits massiques d'émission pour 1 mode :

Les débits massiques d'émission (g.h⁻¹) doivent être déterminés comme suit pour chaque mode, en supposant la densité des gaz d'échappement égale à 1,293 kg.m⁻³ à 273 K (0 °C) et 101,3 kPa :

$$Q_{NOx} (g.h^{-1}) = 1,587.10^{-6} \times [NOx] \times KH \times Qm_{gaz_echap} (g.h^{-1})$$

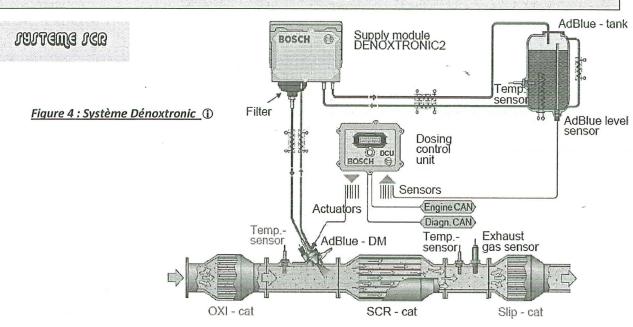
$$Q_{CO} (g.h^{-1}) = 0.966.10^{-6} \times [CO] \times Qm_{gaz\ echap} (g.h^{-1})$$

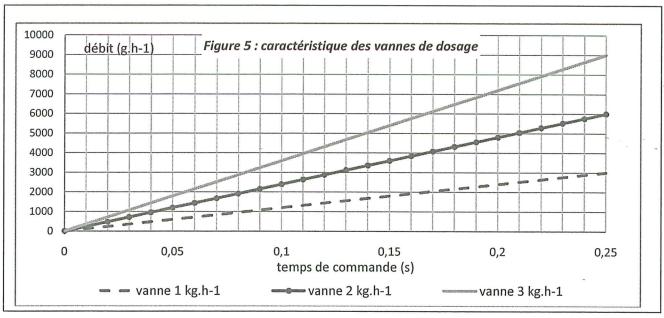
$$Q_{HC} (g.h^{-1}) = 0,479.10^{-6} \times [HC] \times Qm_{gaz_echap} (g.h^{-1})$$

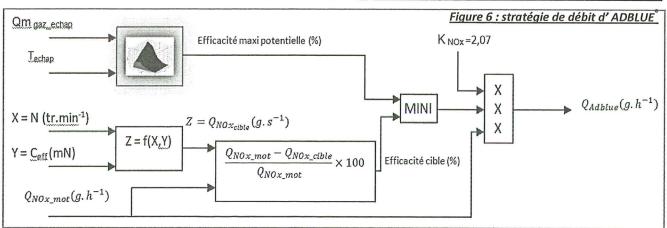
où [NOx], [CO], [HC] sont les concentrations moyennes (ppm) présentes dans les gaz d'échappement. Pour le sujet, on prendra $K_H = 1$.

5

Les émissions E_X (g.kW⁻¹h⁻¹) sont calculées comme suit pour les 13 modes :


$$E_X(g.kW^{-1}\cdot h^{-1}) = \frac{\sum_{i=1}^{13} Q_{Xi}\cdot W_i}{\sum_{i=1}^{13} P_i\cdot W_i}$$


Avec : Q_{Xi} : débit en g.h⁻¹ du polluant X pour le mode i (i = 1 à 13)

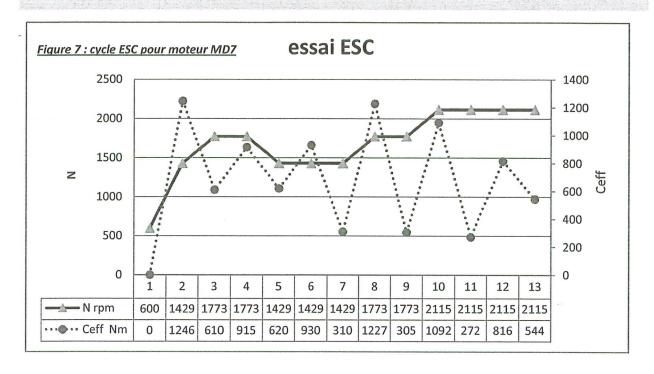

 W_i : le poids (ou coefficient de pondération) défini dans la norme pour le mode i

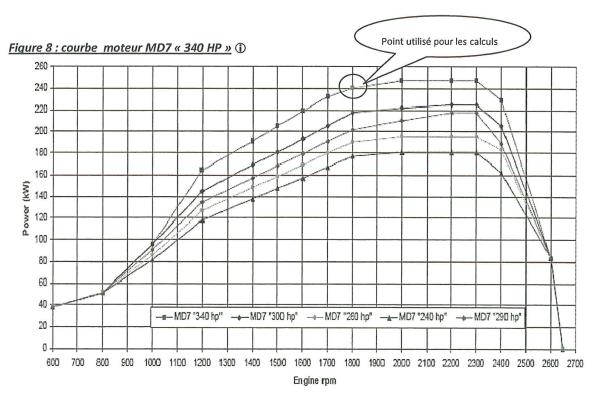
 P_i : la puissance effective sur mode i

Permant Teahnique of 4

Downgate Technique of 5

REVOLTATO D'ESTADIS - CEICLE ESC


Tableau 4 : résultats de l'essai ESC

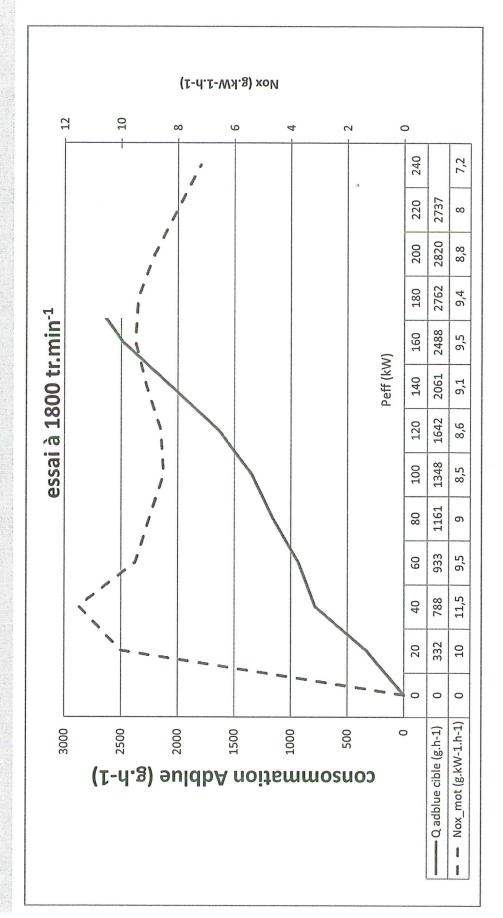

Q Adblue	g/h	0	2267,4	1564,2	1965,6	1499,4	1729,8	404,4	1777,8	556,8	2713,2	201,6	1515,6	1288,8
Peff pond	kW	00'0	14,91	11,32	16,98	4,64	96′9	2,32	20,50	5,66		3,01	9,04	6,02
QCO pond	g/h	0,152	0,989	1,180	1,589	0,363	0,527	0,236	1,658	0,785	2,008	0,653	1,145	0,813
QHC pond	g/h	0,064	860'0	0,117	0,185	0,028	0,052	0,042	0,182	0,149	0,142	0,114	0,081	0,095
QNOX	g/h	3,3	27,9	8,1	26,3	1,6	10,0	11,2	53,5	16,8		11,9	10,5	8,4
QAdblue /Qcarb	%	%0′0	6,1%	9,7%	5,7%	8,1%	6,3%	4,1%	3,8%	4,4%	5,3%	1,3%	3,7%	4,8%
Q Adblue	g/min	0	37,79	26,07	32,76	24,99	28,83	6,74	29,63	9,28	45,22	3,36	25,26	21,48
eff Nox	su	43,7%	80,5%	91,4%	82,1%	%0'96	84,3%	65,5%	69,2%	73,3%	77,77	28,9%	81,9%	83,0%
CO ap cata	mdd	7	15	15	17	13	15	11	18	13	21	17	21	17
HC ap cata	mdd	9	3	3	4	2	3	4	4	5	3	9	3	4
Nox ap cata	mdd	92	258	63	172	35	173	316	353	169	234	188	117	107
Nox av cata	шдд	164	1321	731	096	874	1097	916	1149	634	1049	458	647	628
Qechap	g/h	149400	852480	813600	096996	578160	726480	444240	1058760	624600		794880	1127880	989280
Q d'air	kg/s	0,0415	0,2368	0,226	0,2686	0,1606	0,2018	0,1234	0,2941	0,1735	0,3292	0,2208	0,3133	0,2748
Q gazole	g/s	0,16	10,38	6,53	9,61	5,16	2,60	2,73	13,07	3,52	14,32	4,19	11,23	7,39
Peff	kW	0,0	186,4	113,2	169,8	92,8	139,2	46,4	7,722	56,6	241,8	60,2	180,7	120,5
Poids*	%	15	ø	10	10	2	5	2	6	10	8	5	5	2
mode		1	2	ж	4	2	9	7	8	6	10	11	12	13

^{*} Poids = coefficient de pondération

Document Technique of 6

CRRRCTERISTIQUES MOTEUR - CUCLE ESC

Pocument Technique of 7


eughed - Moltaton

grandeur	notation	valeur	unité	grandeur	notation	valeur	unité
Proportion molaire des NO2 par rapport aux NOx totaux	$\frac{NO_2}{NO_x}$	0,1 (10%)	Sans unité (su)	débit de NOx limite (cible ou objectif visé)	$Q_{NOxcible}$		g.s ⁻¹ ou g.h ⁻¹
masse d'urée produite par gramme d'ammoniac	К _{и_NH3} -		su	débit de NOx effectif sortie moteur, avant système de traitement des NOx	Q_{NOX_mot}		g.s ⁻¹ ou g.h ⁻¹
Constante des gaz parfaits	R	8,314	J.kg ⁻¹ .K ⁻¹	Efficacité cible ou objectif du système de traitement des NOx	E _{cible} %		%
Masse d'urée nécessaire pour réduire 10 moles de NOx	m_u		g	Débit d'additif ADBLUE®	Q _{adblue}		g.s ⁻¹ ou g.h ⁻¹
masse d'urée nécessaire pour réduire 1 gramme de NOx	K _{NOx}	2,07	su	Masse molaire des gaz d'échappement (assimilés à de l'air)	M_{echap}	29	g.mol ⁻¹
masse d'urée nécessaire pour réduire 1 mole de NO ₂	т _{и_NO2}		g.mol ⁻¹	Masse molaire des NOx (assimilés à du NO₂)	M _{NOx}	46	g.mol ⁻¹
masse d'urée nécessaire pour réduire 1 mole de NO	m _{u_NO}		g.mol ⁻¹	Facteur de correction d'humidité pour le calcul des NOx	Кн	1	su
Débit de NOx	Q_{NOx}		g.h ⁻¹	Débit volumique des gaz d'échappement	Qv_{gaz_echap}		dm ³ .h ⁻¹
Concentration de NOx	$[NO_x]$		ppm	Débit statique de l'injecteur d' <i>ADBLUE</i> ®	Q_{stat}		kg.h ⁻¹
Masse volumique des NOx (assimilés à NO2) en conditions de référence	$ ho_{NOx}$	2,05	g.dm ⁻³	Emission spécifique de NOx (sur cycle ESC)	E _{NOX}		g.kW ⁻¹ .h ⁻¹
Masse volumique des HC en conditions de référence	Рнс	0,618	g.dm ⁻³	Rapport massique d'urée dans l' <i>ADBLUE</i> °	R _{mu}	32,5	%
Masse volumique du CO en conditions de référence	Рсо	1,25	g.dm ⁻³	Masse volumique des gaz d'échappement	$ ho_{gaz_{echap}}$		g.dm ⁻³
Masses molaires :	H C N O	1 12 14 16	g.mol ⁻¹				

terme	signification	terme	signification
<i>ADBLUE[®]</i>	Nom commercial donné à	PWM	Pulse Width Modulation
	l'additif de réduction des		ou MLI: Modulation par
	oxydes d'azote		Largeur d'Impulsion
allocation	Valeur limite autorisée,		
	s'applique pour les		
	polluants sur 1 point de		
	fonctionnement moteur		
	donné.		

िठवण्णव्यम प्रदेवव्युप्ट विष भी।

conjoinstion biasing

EXAMEN : BTS M.C.I. – Épreuve : U52 – Étude et analyse des moteurs – Sujet N°04ED09 – dossier réponse Page 14 sur 15

	Q Adblue	g/h	0	2267,4	1564,2	1965,6	1499,4	1729,8	404,4	1777,8	556,8	2713,2	201,6	1515,6	1288,8	
	Peff pond	kW	00'0	14,91	11,32	16,98	4,64	96'9	2,32	20,50	2,66		3,01	9,04	6,02	-
	QCO	g/h	0,152	0,989	1,180	1,589	0,363	0,527	0,236	1,658	0,785	2,008	0,653	1,145	0,813	
)	QHC	g/h	0,064	0,098	0,117	0,185	0,028	0,052	0,042	0,182	0,149	0,142	0,114	0,081	0,095	
)	QNOX	g/h	3,3	27,9	8,1	26,3	1,6	10,0	11,2	53,5	16,8		11,9	10,5	8,4	
	QAdblue /Qcarb	%	%0′0	6,1%	6,7%	5,7%	8,1%	6,3%	4,1%	3,8%	4,4%	5,3%	1,3%	3,7%	4,8%	
	Q Adblue	g/min	0	37,79	26,07	32,76	24,99	28,83	6,74	29,63	9,28	45,22	3,36	25,26	21,48	
	eff Nox	ns	43,7%	80,5%	91,4%	82,1%	%0′96	84,3%	65,5%	69,2%	73,3%	77,77	58,9%	81,9%	83,0%	
)	CO ap cata	mdd	7	15	15	17	13	15	11	18	13	21	17	21	17	
	HC ap cata	mdd	9	m	n	4	2	n	4	4	5	3	9	3	4	
	Nox ap cata	mdd	92	258	63	172	35	173	316	353	169	234	188	117	107	
)	Nox av cata	mdd	164	1321	731	096	874	1097	916	1149	634	1049	458	647	628	
)	Qechap	g/h	149400	852480	813600	096996	578160	726480	444240	1058760	624600		794880	1127880	989280	
	Q air	kg/s	0,0415	0,2368	0,226	0,2686	0,1606	0,2018	0,1234	0,2941	0,1735	0,3292	0,2208	0,3133	0,2748	
	Q gazole	g/s	0,16	10,38	6,53	9,61	5,16	7,60	2,73	13,07	3,52	14,32	4,19	11,23	7,39	
	Peff	kW	0'0	186,4	113,2	169,8	92,8	139,2	46,4	7,722	9'95	241,8	60,2	180,7	120,5	
	Poids*	%	15	∞	10	10	5	5	5	6	10	∞	S	S	2	
	mode		1	2	3	4	5	9	7	∞	6	10	11	12	13	

* Poids = coefficient de pondération

émissions / cycle (g.kW-1.h-1) 0,011 0,100

101,4

Somme des 12 modes (13 modes moins le mode 10) | 189,4

12,1

1,3

Somme

EXAMEN : BTS M.C.I. – Épreuve : U52 – Étude et analyse des moteurs – Sujet N°04ED09 – dossier réponse Page 15 sur 15