BREVET DE TECHNICIEN SUPÉRIEUR MOTEURS À COMBUSTION INTERNE

Session 2006

ÉTUDE DES MOTEURS

U51 EXPLOITATION D'ESSAIS MOTEURS

Durée 3 h - Coefficient 3

Aucun document autre que le sujet n'est autorisé. L'usage de la calculatrice est autorisé.

Documents à rendre avec la copie : DR1 page 8/16

DR2 page 13/16 DR3 page 14/16 DR4 page 15/16 DR5 page 16/16

Dès que le sujet vous est remis, assurez-vous qu'il soit complet.

Le sujet comporte 16 pages numérotées de la façon suivante :

Pages 0 à 1 : page de garde et informations diverses

Pages 2 à 7 : présentation et texte du sujet

Pages 9 à 12 : documents techniques notés DT

Pages 8, 13, 14, 15 et 16 : documents réponses notés DR

CODE ÉPRE 0606MOE		EXAMEN : BREVET DE TECHNICIE SUPÉRIEUR	SPÉCIALITI N MOTEURS À COMI INTERNE	BUSTION
SESSION 2006	SUJET		TUDE DES MOTEURS D'ESSAIS MOTEURS U	51
Durée : 3 h		Coefficient: 3	Code sujet : 172NB05	Page 0/16

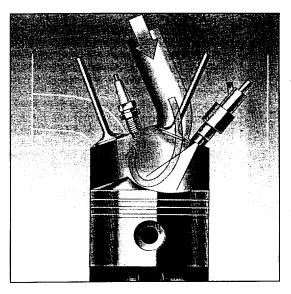
Le sujet complet est composé de 16 pages :

- Pages 2 à 7, les informations et les questions.
- Pages 9, 10, 11 et 12, les documents techniques notés DT (fiches d'essais contenant les valeurs mesurées).
- Pages 8, 13, 14, 15 et 16, les documents réponses notés DR qui contiennent des résultats d'essais mis en forme ou des aides pour organiser vos réponses. Ces documents sont à compléter.

Les documents suivants sont donc à rendre avec votre copie **même si vous ne les** avez pas renseignés :

- Page 8/16 (DR1)
- Page 13/16 (DR2)
- Page 14/16 (DR3)
- Page 15/16 (DR4)
- Page 16/16 (DR5)

Soit 5 feuilles en tout extraites du sujet.


Il est conseillé de consacrer **15 mn** à la lecture complète du sujet puis de répartir votre temps de travail comme suit :

- **50 mn** pour la partie 1 : 1-1 ; 1-2 ; 1-3
- **30 mn** pour la partie 2 : 2-1 ; 2-3 ; 2-2 ; 2-4
- 40 mn pour la partie 3 : 3-1 ; 3-2 ; 3-3
- **45 mn** pour la partie 4 : 4-1 ; 4-2 ; 4-3

Le regroupement de 2 questions dans un cadre signifie que la première doit être traitée avant de répondre à la seconde, toutes les autres questions sont totalement indépendantes et peuvent être traitées dans l'ordre de votre choix pourvu que vous en fassiez une nomenclature rigoureuse sur votre copie.

Le moteur et les essais réalisés : présentation.

L'étude qui suit s'appuie sur des résultats d'essais obtenus à partir d'un moteur à INJECTION DIRECTE ESSENCE. Ce moteur est un 4 cylindres de 1830 cm³ capable de fonctionner en mélange très pauvre grâce à la maîtrise de la technique de "charge stratifiée". Ces essais sont réalisés dans un objectif d'analyse concurrence pour estimer les gains apportés dans cette catégorie de cylindrée par l'injection directe et pour examiner les stratégies adoptées pour cette réalisation commerciale.

Pour cette application la stratification de la charge est obtenue par la disposition du conduit d'admission qui produit un fort tumble dit "inverse" et par la forme du bol du piston qui guide le jet jusqu'à proximité de la bougie. L'injection se produit donc à la fin de la phase compression et nécessite une pression d'injection de l'ordre de 40 bar.

Cette stratification ne concerne qu'une partie réduite du domaine d'utilisation du moteur. Dans les <u>zones à charge non stratifiée l'injection se déroule durant toute la phase admission</u>. Le mélange, brassé pendant la compression est alors homogène à l'instant de l'allumage (il peut néanmoins être pauvre, stœchiométrique ou riche).

L'étude qui suit se propose d'examiner l'apport de cette stratégie sur les caractéristiques du moteur (principalement sur le rendement effectif) et sur les performances du véhicule qui en est équipé (consommation kilométrique et émissions polluantes).

- Les résultats d'essais fournis s'appuient sur 64 points d'essai (DR1 page 8/16) positionnés sur 7 iso-vitesses, ce qui balaie tout le champ d'utilisation de ce moteur.
- Lorsqu'il sera fait référence, dans ce sujet, à un essai sous la forme (3000,3) par exemple, il faudra lire : "tableau des résultats de l'iso-vitesse 3000tr/mn ; colonne 3 bar de Pme" pour trouver les relevés correspondants.

1. Identification des différentes stratégies de gestion de la richesse (documents à utiliser DR1,DT1, DT2 et DR4)

Objectif : Observer de manière globale les résultats d'essais et repérer les grandeurs significatives pour « prendre en main le sujet ».

Les stratégies de contrôle moteur permettent de réaliser différents types de gestion de la combustion :

- ✓ en mélange stœchiométrique
- ✓ en mélange riche
- ✓ en mélange très pauvre stratifié
- ✓ en mélange pauvre homogène

Sur le DR1 les différentes zones correspondant à ces 4 situations de mélange sont définies par les frontières portées en pointillés.

- Question 1-1: Pour l'iso-régime 3000 tr/mn (DT2), complétez le document réponse DR4 (page 15/16) en énonçant les valeurs (ou les domaines caractéristiques) de chacun des réglages tels que : richesse, phasage injection, commande EGR et des valeurs mesurées telles que teneur en CO₂ et O₂. Identifiez à la fin, dans la dernière colonne, le type de mélange réalisé dans chaque zone et,
 - Commentez les valeurs pour la zone de charge stratifiée en justifiant les différences principales par rapport aux charges homogènes (5 à 6 lignes sur DR4).

Mesure de la richesse (document à utiliser DT1).

Objectif : les valeurs inhabituelles de richesse (ces essais atteignent des dosages de l'ordre de 1/45) amènent à contrôler la fiabilité des informations données par les sondes de richesse à partir des émissions mesurées. Voici une manière de réaliser ce calcul :

- Un dosage M_{carburant}/M_{air} définit également un rapport M_{carbone}/M_{azote} dans l'hypothèse où le carbone est dans le carburant seul et l'azote seulement présent dans l'air.
- Ce rapport est strictement proportionnel au dosage ce qui permet d'écrire que la richesse $\emptyset = (M_{carburant}/M_{air})_{réalisé} / (M_{carburant}/M_{air})_{stoechiométrique}$ est donc également définie par $\emptyset = (M_{carbone}/M_{azote})_{réalisé} / (M_{carbone}/M_{azote})_{stoechiométrique}$.
- Question 1-2: Une démarche vous est proposée pour recalculer, par le principe énoncé ci-dessus, la richesse à partir des concentrations des produits à l'échappement pour le point (2000,3).
 - Calculez (M_{carbone}/M_{azote})_{stoechiométrique} à partir des quantités de réactifs en présence lors d'une réaction stoechiométrique (vous n'êtes pas obligé d'écrire la réaction complète équilibrée).

Le carburant d'essai est défini pour y = 1,826 et un Pco = 14,53 ; l'air par $(O_2 + 3,78 N_2)$.

 Calculez (M_{carbone}/M_{azote})_{réalisé} à partir des concentrations des produits de combustion contenant du carbone (CO₂, CO et HC) dont les concentrations ont été mesurées. La concentration en azote sera déduite par soustraction sachant que les valeurs sont données en extrait sec et que les teneurs de H₂ sont négligées.

Calculez la richesse définie par les émissions.

Les masses molaires Mcarbone = 12g/mole ; Mazote = 14g/mole ; Moxygène = 16g/mole ; Mhydrogène = 1g/mole

- ® Question 1-3: Analyse des résultats:
 - Présentez les résultats sur votre copie sous forme d'un tableau comme proposé ci-dessous.
 - Ajoutez dans ce récapitulatif la richesse calculée à partir du rapport Débit essence/Débit d'air admis (qui sont donnés par la fiche d'essai).

%CO ₂ mesuré =	
%CO mesuré =	
%O ₂ mesuré =	
%CH _y mesuré =	
%N₂ calculé =	

Conditions d'essai (N,Pme)	(2000,3)
Richesse moyenne 4 sondes	
Richesse sonde ligne d'échappement	
richesse calculée par les émissions	
Richesse calculée par les débits	

- Comparez les différents moyens d'évaluation de la richesse et commentez les écarts sur les valeurs obtenues.
- Le CO₂ présent dans l'air (voir DT1) peut-il influencer les mesures ou les calculs de richesse ? La valeur du taux d'EGR a-t-elle une influence ?
- Exprimez (en 2 à 3 lignes) vos conclusions sur la validité de la mesure.
- **2.** Analyse des pertes par pompage (documents à utiliser DT1, DR2, DR3)

 Objectif: le fonctionnement en charge stratifiée a pour but de réduire les pertes par pompage du cycle moteur. À partir des données présentes dans les relevés d'essai, nous pouvons estimer les valeurs des Pmi_{BP} et réaliser une première analyse.

Ces pertes sont estimées par la pression moyenne indiquée "basse pression" telle que Pmi = Pmi_{HP} - Pmi_{BP}. Les valeurs Pmi et Pmi_{Hp} sont calculées à partir des diagrammes pression/volume relevés dans la chambre de combustion. Le document DR2 (page 13/16) rassemble les valeurs des Pmi_{BP} exprimées en fonction de la pression tubulure entre papillon et soupape (notée Ptub et exprimée en pression absolue).

- Question 2-1: Isolez les points correspondant à N = 2000 tr/mn et tracez une droite de tendance pouvant rendre compte de la relation Pmi_{BP} = f(Ptub) (ajustement graphique "au jugé").
 - En exprimant la fonction Pmi_{BP} = K.Ptub + B, évaluez la valeur de K.
- Question 2-2: Justifiez la tendance générale de l'ensemble des points portés sur le DR2 (4 à 5 lignes + un croquis si nécessaire).

Pourquoi l'évolution de la Pmi_{BP} à haut régime est-elle différente de celle à bas régime ? (tracez par exemple la droite moyenne des points à 4500 tr/mn pour étayer votre raisonnement).

- Question 2-3: Estimez l'augmentation de Ptub due à l'utilisation de la charge stratifiée en mélange pauvre (par rapport à une situation stœchiométrique) pour ce faire, sur le (DR3 page 14/16):
 - Positionnez le point (2000;3) dans le repère (c'est un point en charge stratifiée).
 - Recherchez 2 points à 2000 tr/mn dans le tableau du DT1 qui soit en charge homogène et en richesse 1. Positionnez ces 2 points dans le plan Pme-Ptub.
 - Il faut estimer la valeur de Ptub qui serait réalisée à (2000 ; 3) en charge homogène. Le graphe sur le DR3 tracé à partir du DT4 montre que la Ptub dépend quasi linéairement de la Pme à 4500 tr/mn en charge homogène et il semble que l'on puisse appliquer la tendance définie à 4500 tr/mn au régime 2000 (hypothèse : la pente est la même à 2000 et à 4500 tr/mn en charge homogène).

Chiffrez l'accroissement de pression tubulure obtenue grâce à la stratification de la charge. Il sera notée Δ **Ptub** sur le document réponse.

Question 2-4: Ce ΔPtub va avoir une incidence sur la Pmi_{BP} et donc engendrer un ΔPmi_{BP}. Estimez cette variation de la Pmi_{BP} à partir du coef. directeur établi en 2-1.

<u>Remarque</u> : ce △Pmi_{BP} sera logiquement négatif puisque le but est de réduire les pertes par pompage.

3. Analyse des rendements au point (2000 ; 3) (documents à utiliser DT1)

Objectif : nous voulons maintenant traduire le △Pmi_{BP} en un gain sur le rendement effectif en estimant la situation (2000,3) en charge homogène et en la comparant à la situation charge stratifiée qui a été caractérisée sur le DT1.

Pour la suite, nous considérerons ∆Pmi_{BP} = - 0,4 b

R Question 3-1 : Calculez le rendement effectif au point (2000 ; 3) obtenu en charge stratifiée. Il sera noté : $\eta_{\text{eff.stra}}$.

Valeurs numériques : le Pci du carburant d'essai est de 43,5 MJ/kg.

Hypothèse de travail :

Une analyse préalable de la Pmf à différentes Pme et différents régimes a permis de conclure que la Pmf dépend essentiellement du régime et que localement autour de 3b de Pme la Pmf n'est pas liée à l'évolution de la Pme.

Question 3-2: Si ce point était réalisé en charge homogène, et en supposant que le rendement de combustion et que le rendement mécanique soient constants,

calculez la valeur du rendement effectif qui serait réalisé en charge homogène sur ce même point (2000 ; 3). Il sera noté $\eta_{\text{eff.homo}}$. Rappel : la Pmi_{BP} chute de - 0,4b en stratifié (cf 2-4).

Démarche à suivre :

- A partir des données du DT1 calculez la Pmi_{BP} du point "stratifié".
- En déduire la Pmi_{BP} estimée en homogène et conclure sur la Pmi_{HP} nécessaire en charge homogène pour produire 3b de Pme.
- Calculez l'augmentation de la masse injectée par cycle (notée M_{cy}) à Pme = 3b en supposant que le rapport Pmi_{HP}/M_{cy} soit constant autour de ce point.
- Estimez alors le gain sur le rendement effectif apporté par la stratification de la charge. Exprimez ce gain en pourcentage.
- Question 3-3: En 4 à 5 lignes, proposez des conclusions sur l'intérêt de la stratification de la charge en mélange pauvre en précisant les domaines d'utilisation à privilégier pour en bénéficier au mieux.
- **4.** Adaptation du moteur au véhicule (document à utiliser DR1, DR5)

 Objectif: nous cherchons à évaluer la consommation que peut espérer l'utilisateur d'un tel équipement (donc la performance de la stratégie stratifiée), nous considérons une situation de roulage à 90 km/h stabilisé pour ce calcul.

Le véhicule motorisé par ce moteur a des caractéristiques de pneumatiques, d'aérodynamique et de transmission qui amènent à une demande de puissance effective moteur de 13,7 kW à 90 Km/h.

L'ensemble des points du plan (Pme, N) où Pe = 13,7 kW est déjà tracé sur le DR1 (page 8/16) sous la forme d'une hyperbole d'iso-puissance.

- Question 4-1: Réalisez un graphe sur le repère fourni au DR5, en 4 points, qui montre la variation de Cse entre 1500 et 3000 tr/mn (les valeurs seront prises dans les DT1 et DT2, vous procéderez à des interpolations si nécessaire).
 - Identifiez le point de l'iso-puissance qui permettra de réaliser la plus basse consommation à 90 km/h (donc les plus faibles émissions de CO₂).
 - Pour ce point, calculez la consommation en L/100km et exprimez la démultiplication optimale sous la forme (x)km/h pour 1000tr/mn moteur.
 Valeurs numériques : La masse volumique du carburant est de 720 kg/m³.

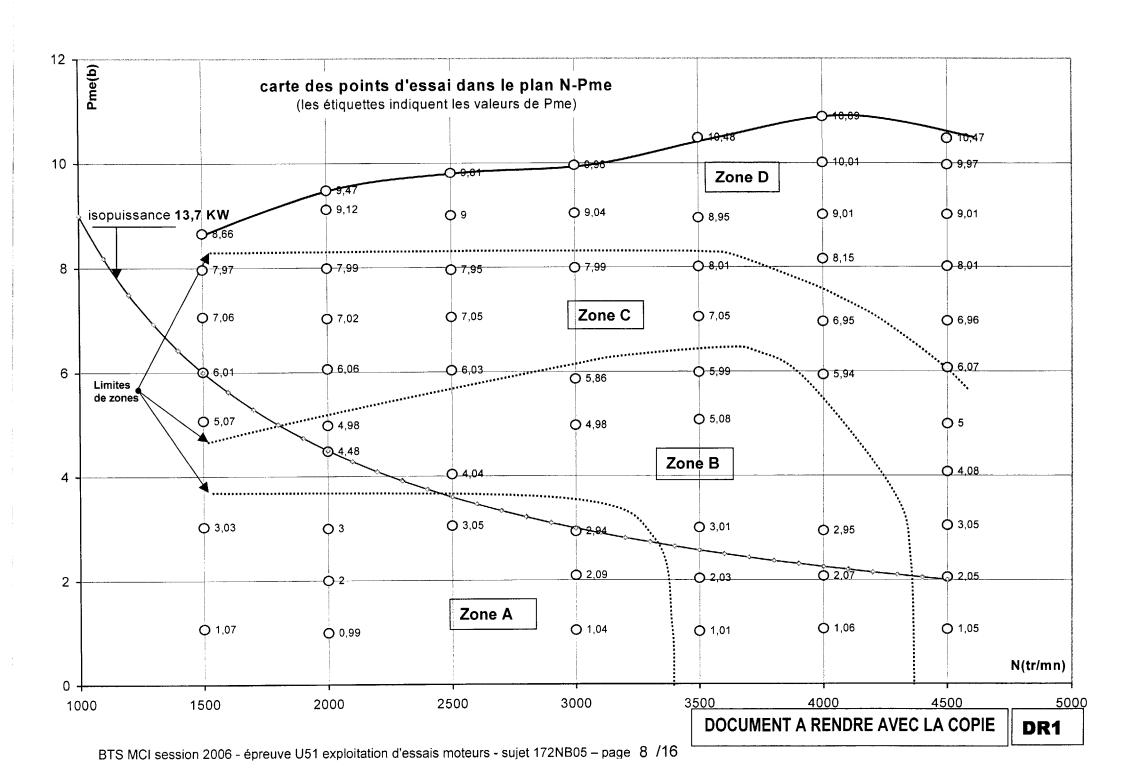
Emissions de polluants à 90Km/h (document à utiliser DT2)

Objectif: pour estimer la performance pollution du véhicule il nous faut pouvoir traduire chaque situation de roulage en émissions de polluants exprimés en g/kW.h puis en g/km.

Pour des raisons d'agrément de conduite le constructeur a choisi une démultiplication plus courte que la valeur optimisant la consommation. Le régime moteur est de 2500 tr/mn à 90 km/h (soit une démultiplication de 36km/h pour 1000tr/mn) et la Pme de 3,6bar à 90 Km/h.

Rappel du principe de calcul des émissions spécifiques :

- Le nombre de môles spécifiques de carburant (n_c/KW.h) est égal à Cse/(12+y) pour un carburant de type CH _y. (y = 1,826 pour ces essais).
- Ce nombre de môles consommées se retrouve en même nombre de môles de carbone dans le CO₂, HC, et CO donc dans le carbone total X = %CO₂ + %CO + %HC. Nous pouvons donc écrire pour chaque type de polluant considéré :

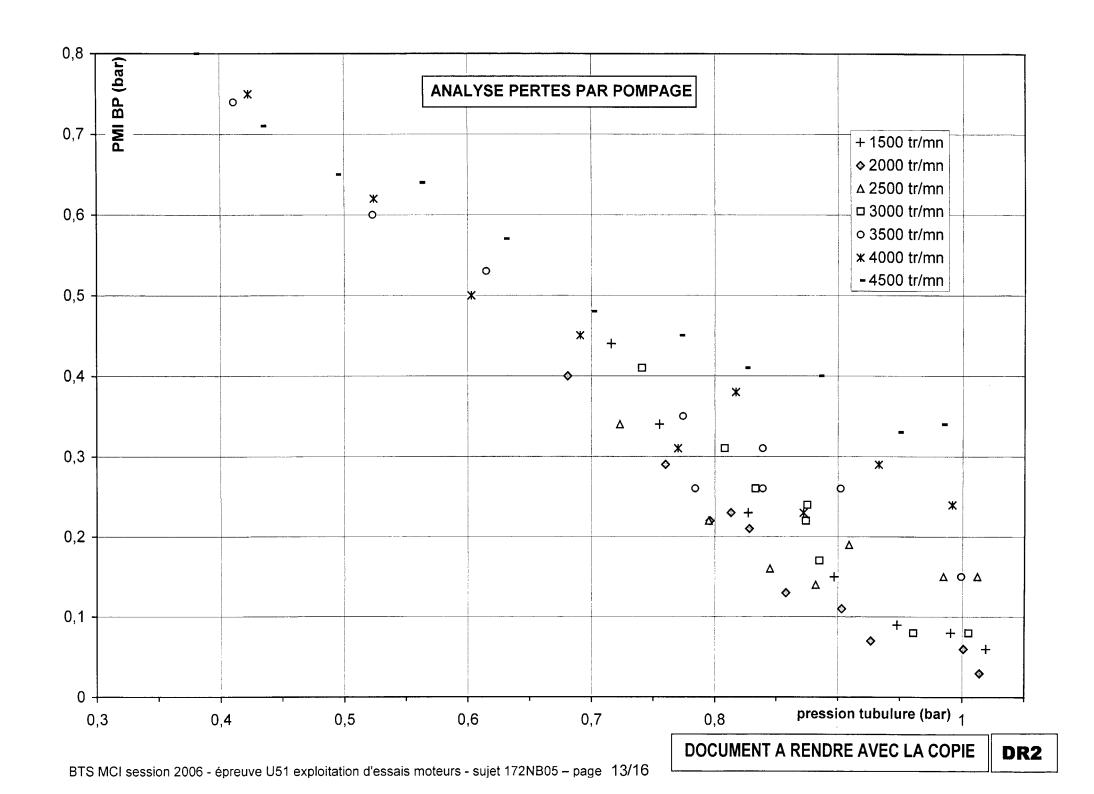

$$\frac{n_{\text{môles polluants}}/\text{kW.h}}{n_{\text{môles carburant}}/\text{kW.h}} = \frac{\text{%polluant}}{X}$$

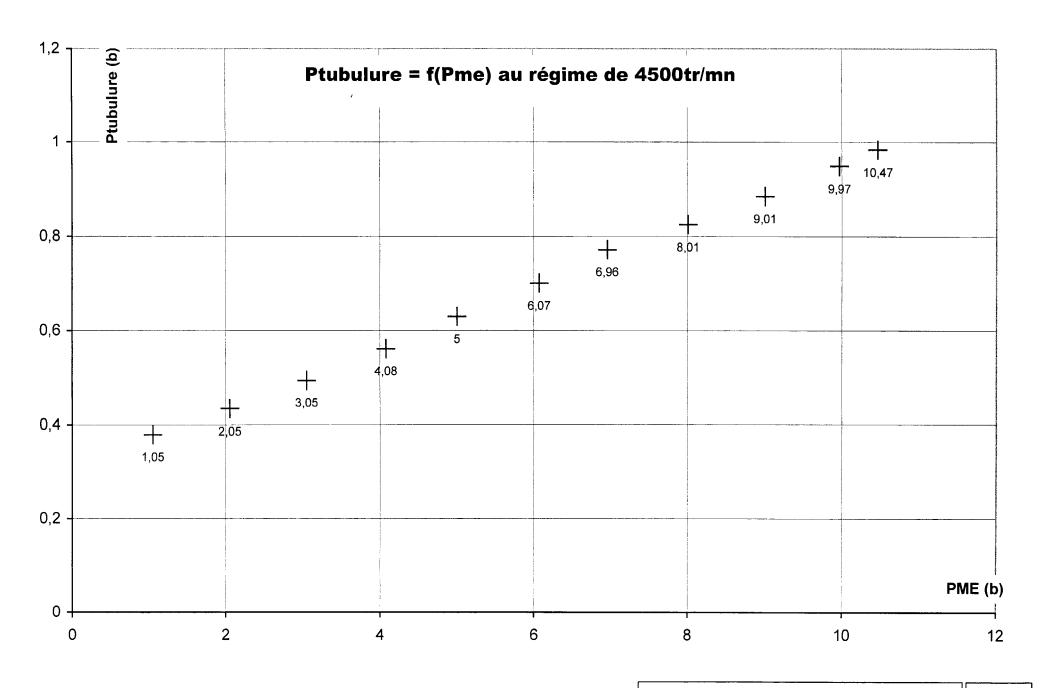
Question 4-2: Utilisez cette relation pour traduire les émissions (de CO, CO₂, HC et NO_x) du point (2500; 3,6) en émissions spécifiques en g/kW.h. <u>La définition des concentrations sur ce point se fera par interpolation linéaire</u> sur les valeurs proches. Vous renseignerez progressivement le tableau du DR5 pour rendre compte du déroulement de vos calculs.

La composition des NO_x sera considérée quasi identique à du NO.

Question 4-3: Calculez ensuite les émissions en g/km sachant que pour ce point la vitesse est de 90 Km/h (et la Pe de 13,7 kw).

 Ce résultat sera également reporté dans le tableau de synthèse du DR5.

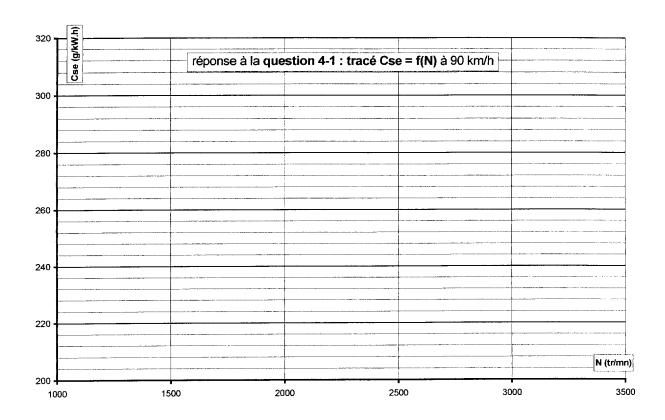



	ISOREGIME 1500 tr/mn											
couple effectif	N.m	15,6	44,3	74	87,7	103	116,4	126,4				
PME	bar	1,07	3,03	5,07	6,01	7,06	7,97	8,66				
Cse	g/Kw.h	497	267	285	281	286	281	419				
PMI	bar	1,53	3,62	5,45	6,42	7,4	8,49	9,28				
PMI de la boucle HP	bar	1,97	3,71	5,79	6,65	7,55	8,57	9,34				
Phasage de la fin d'injection		-52	-59	-318	-313	-286	-266	-257				
Débit d'air admis	Kg/h	39,5	57,2	45,6	52,6	62,3	71,6	72,2				
CO ₂ présent dans l'air	%	1,33	0,54	0,94	0,64	0,06	0,06	0,07				
Pression d'air amont soupape		0,716	0,948	0,755	0,827	0,897	0,991	1,019				
taux d'EGR	%	23,6	8,2	6,3	4,2	0	0	0				
débit massique de carburant	Kg/h	1,22	1,86	3,32	3,87	4,66	5,17	8,36				
HC	ppm	7115	1632	2562	2400	2140	1682	9998				
СО	ppm	2313	2622	6399	6509	7633	8017	79881				
NOx	ppm	122	618	881	1211	2357	2073	59				
CO ₂	%	5,49	6,13	14,32	14,31	14,25	14,19	7,14				
O ₂	%	12,53	11,75	0,35	0,27	0,69	0,55	0,02				
richesse moyenne 4 sondes		0,383	0,401	1,006	1,011	0,999	1,002	1,379				
richesse sonde dans la ligne d'éch.		0,383	0,417	1,01	1,011	1,007	1,009	1,385				
			IS	SOREG	IME 200	0 tr/mn						
couple effectif	N.m	14,4	29,2	43,8	65,3	72,2	84,4	102,4	116,5	133,1	138,3	
PME		0,99	2	3	4,48	4,98	6,06	7,02	7,99	9,12	9,47	
Cse	g/Kw.h	473	291	298	241	268	261	248	258	274	290	
PMI	bar	1,72	2,68	3,67	5,04	5,46	6,59	7,56	8,29	8,96	8,99	
PMI de la boucle HP		2,12	2,89	3,78	5,33	5,69	6,81	7,69	8,36	9,02	9,02	
Phasage de la fin d'injection		-63	-62	-62	-307	-301	-318	-302	-285	-279	-278	
Débit d'air admis		48,3	61,6	71,8	68,6	75,2	65,6	76,4	87,5	97,7	98,7	
CO ₂ présent dans l'air	%	0,96	0,72	0,53	0,04	0,04	1,06	0,43	0,07	0,07	0,07	
Pression d'air amont soupape		0,681	0,828	0,903	0,76	0,813	0,796	0,858	0,927	1,001	1,014	
taux d'EGR	. %	17	11,4	7,4	0	0	7,1	2,8	0	0	0	
débit massique de carburant		1,43	1,78	2,74	3,3	4,08	4,84	5,34	6,31	7,66	8,41	
HC		7471	5616	4381	3108	2968	2761	2694	2267	2774	3192	
CC	<u> </u>	2145	2567	3229	894	902	6672	6992	7121	27055	45779	
NOx		186	264	396	1009	811	1288	2102	2388	1350	715	
CO ₂	%	5,44	5,98	6,65	9,84	9,84	14,36	14,25	14,16	13,14	12	
0,	%	12,86	12,2	11,24	7,08	7,1	0,5	0,49	0,45	0,03	0	
richesse moyenne 4 sondes		0,374	0,396	0,439	0,664	0,661	1,008	1,001	0,999	1,069	1,131	
richesse sonde dans la ligne d'éch.		0,381	0,414	0,465	0,672	0,669	1,011	1,007	1,008	1,073	1,134	

	ISOREGIME 2500 tr/mn											
couple effectif	N.m	44,5	58,9	88,1	102,9	116	131,4	143,2				
PME	bar	3,05	4,04	6,03	7,05	7,95	9	9,81				
Cse	g/Kw.h	272	249	253	242	251	264	286				
PMI	bar	3,81	4,78	6,65	7,73	7,95	9,06	9,06				
PMI de la boucle HP	bar	3,95	5,12	6,87	7,89	8,14	9,21	9,21				
Phasage de la fin d'injection	°V	-70	-311	-318	-302	-283	-273	-273				
Débit d'air admis	Kg/h	88,3	81,7	84,5	96,5	109,2	122	127,3				
CO ₂ présent dans l'air	%	0,64	0,07	0,91	0,37	0,07	0,06	0,06				
Pression d'air amont soupape	bar	0,882	0,723	0,795	0,845	0,909	0,985	1,012				
taux d'EGR	%	8,4	0	6,2	2,3	0	0	0				
débit massique de carburant	Kg/h	3,17	3,84	5,85	6,52	7,65	9,12	10,76				
HC	ppm	4273	2944	2716	2228	1853	2354	3217				
CO	ppm	3779	1000	6677	7189	7512	15703	45230				
NOx	ppm	478	945	1410	2024	2285	1769	749				
CO ₂	%	7,11	9,83	14,17	17,11	14,1	13,76	11,97				
O ₂	%	10,2	6,8	0,47	0,5	0,48	0,21	0,04				
richesse moyenne 4 sondes		0,473	0,667	1,003	1,007	1,003	1,036	1,131				
richesse sonde dans la ligne d'éch.		0,508	0,673	1,008	1,01	1,009	1,04	1,132				
			15	SOREGI	ME 300	0 tr/mn						
couple effectif	N.m	15,1	30,5	42,9	72,7	85,5	116,6	131,9	145,3			
PME	bar	1,04	2,09	2,94	4,98	5,86	7,99	9,04	9,96			
Cse	g/Kw.h	606	345	310	258	240	247	256	271			
PMI	bar	1,97	3	3,74	5,81	6,6	8,62	8,97	8,97			
PMI de la boucle HP	bar	2,38	3,31	3,96	6,07	6,84	8,79	9,05	9,05			
Phasage de la fin d'injection	°V	-72	-72	-73	-297	-297	-286	-272	-272			
Débit d'air admis	Kg/h	100,4	107,5	121,5	123,8	131,5	130	145,3	155,2			
CO ₂ présent dans l'air		0,29	0,33	0,31	0,06	0,05	0,05	0,05	0,05			
Pression d'air amont soupape		0,741	0,808	0,874	0,833	0,875	0,885	0,961	1,005			
taux d'EGR	%	5,4	5,2	4,4	0	0	0	0	0			
débit massique de carburant		2,88	3,3	4,18	5,89	6,44	9,05	10,62	12,38			
НС	 	9971	5969	5043	3426	2391	2011	2326	3049			
CO	- ' '	2133	2424	2797	1215	1253	7285	15622	38867			
NOx		185	347	539	463	878	2543	1869	963			ļ
CO ₂		4,58	5,64	6,14	9,24	9,82	14,01	13,69	12,3			
O ₂	%	13,81	12,33	11,57	7,51	6,7	0,51	0,2	0,04			
richesse moyenne 4 sondes		0,33	0,342	0,364	0,626	0,663	1,001	1,037	1,113			
richesse sonde dans la ligne d'éch.		0,32	0,387	0,422	0,636	0,672	1,008	1,04	1,114			

	ISOREGIME 3500 tr/mn											
couple effectif	N.m	14,7	29,6	44	74,2	87,4	102,9	117	130,7	152,9		
PME	bar	1,01	2,03	3,01	5,08	5,99	7,05	8,01	8,95	10,48		
Cse	g/Kw.h	658	360	309	257	250	261	255	270	271		
PMI	bar	1,93	2,85	3,94	5,98	6,88	8,26	8,26	8,26	9,26		
PMI de la boucle HP	bar	2,67	3,45	4,47	6,33	7,19	8,52	8,52	8,52	9,41		
Phasage de la fin d'injection	°V	-318	-317	-317	-298	-296	-288	-274	-265	-266	·	
Débit d'air admis	Kg/h	52,4	79,4	101,6	141,2	156,9	141	156	170,5	197,2		
CO ₂ présent dans l'air	%	0,08	0,07	0,07	0,07	0,07	0,15	0,07	0,07	0,06		
Pression d'air amont soupape	bar	0,411	0,523	0,615	0,774	0,839	0,784	0,839	0,902	0,999		
taux d'EGR	%	0	20	0	0	0	0,8	0	0	0		
débit massique de carburant	Kg/h	3,5	3,91	4,99	6,99	8,03	9,85	10,92	12,95	15,21		
HC	ppm	2176	2806	2909	2155	1529	1754	2047	2470	2739		, -
CO	ppm	2082	1554	1351	1558	1735	8045	11684	21961	37707		
NOx	ppm	2594	1094	898	911	1004	2305	2234	1706	1228		
CO ₂	%	11,73	9,86	9,62	9,96	10,31	14,13	13,97	13,44	12,56		
O ₂	%	4,09	6,7	7,11	6,67	6,2	0,45	0,3	0,11	0,05		
richesse moyenne 4 sondes		0,803	0,67	0,649	0,663	0,681	1,004	1,021	1,057	1,107		
richesse sonde dans la ligne d'éch.		0,812	0,68	0,659	0,673	0,691	1,008	1,024	1,059	1,107		
				SOREG								
couple effectif		15,4	30,3	43	86,7	101,4	119	131	146	159		
PME		1,06	2,07	2,95	5,94	6,95	8,15	9,01	10,01	10,89		
Cse	g/Kw.h	576	387	325	281	295	274	277	285	297		
PMI	bar	2,08	3	3,95	7,06	8,19	9,32	10,56	11,43	12,3		
PMI de la boucle HP	bar	2,83	3,62	4,45	7,51	8,5	9,7	10,79	11,72	12,54		
Phasage de la fin d'injection		-317	-317	-316	-293	-278	-266	-257	-257	-257		
Débit d'air admis		68,8	97,2	119	144,1	165,9	179,1	194,5	212,3	232,6		
CO ₂ présent dans l'air	%	0,05	0,05	0,05	0,05	0,04	0,04	0,04	0,04	0,04		
Pression d'air amont soupape		0,423	0,524	0,603	0,691	0,77	0,817	0,872	0,933	0,992		
taux d'EGR		0	0	0	0	0	0	0	0	0		
débit massique de carburant		3,72	4,9	5,8	10,2	12,52	13,69	15,26	17,46	19,84		
HC		2333	2916	2930	1518	1705	2404	2623	2885	3063		
CO	<u> </u>	1777	1306	1254	7637	13700	20477	33448	49886	59747		
NOx		1939	1068	803	2604	2081	2124	1455	883	623		-
CO ₂	%	10,76	9,73	9,62	14,04	13,86	13,66	12,98	11,99	11,38		
O ₂	%	5,44	6,88	7,03	0,52	0,24	0,18	0,04	0	0		
richesse moyenne 4 sondes		0,736	0,662	0,652	1,003	1,03	1,047	1,091	1,143	1,18		
richesse sonde dans la ligne d'éch.		0,744	0,668	0,66	1,007	1,033	1,049	1,092	1,142	1,178		

	ISOREGIME 4500 tr/mn													
couple effectif														
PME	bar	1,05	2,05	3,05	4,08	5	6,07	6,96	8,01	9,01	9,97	10,47		
Cse	g/Kw.h	641	418	347	311	298	298	305	288	282	287	294		
PMI	bar	2,32	3,23	4,28	5,29	6,28	7,29	8,27	9,31	10,52	11,5	11,9		
PMI de la boucle HP	bar	3,12	3,94	4,93	5,93	6,85	7,77	8,72	9,72	10,92	11,83	12,24		
Phasage de la fin d'injection	°V	-317	-315	-307	-299	-292	-282	-270	-257	-251	-251	-251		
Débit d'air admis	Kg/h	64,8	82,5	101,8	123	144,6	167,4	189,5	205,2	224,4	245	256,2		
CO ₂ présent dans l'air	%	0,09	0,08	0,06	0,05	0,05	0,04	0,04	0,04	0,04	0,04	0,04		
Pression d'air amont soupape	bar	0,38	0,434	0,494	0,562	0,63	0,701	0,772	0,825	0,885	0,949	0,984		
taux d'EGR	%	0	0	0	0	0	0	0	0	0	0	0		
débit massique de carburant	Kg/h	4,65	5,91	7,3	8,73	10,23	12,44	14,62	15,85	17,5	19,73	21,2		
HC	ppm	2338	2247	1997	1614	1422	1819	2002	2077	2334	2580	2948		
CO	ppm	8909	8449	8467	8487	7930	16850	27673	26167	38496	49406	62185		
NOx	ppm	2662	2673	2658	2390	2152	1789	1313	1574	1189	877	599		
CO_2	%	14,1	14,15	14,15	14,22	14,33	13,95	13,32	13,4	12,65	11,98	11,18		
O_2	%	0,6	0,61	0,57	0,47	0,38	0,11	0	0,02	0	0	0		
richesse moyenne 4 sondes		1,001	1,002	1,001	1,004	1,004	1,042	1,075	1,07	1,11	1,149	1,192		
richesse sonde dans la ligne d'éch.	·	1,006	1,005	1,005	1,007	1,008	1,043	1,075	1,071	1,11	1,147	1,19		



Réf zone	Valeurs de richesse caractéristiques	Valeurs de phasage injection	Commande de l'EGR	Teneurs en O2	Teneurs en CO2	Conclusion sur le type de mélange
A						
В						
С						
D						

Commentaires sur les paramètres de la zone de charge stratifiée :
_

_
-

DOCUMENT A RENDRE AVEC LA COPIE

DR4

		guestion 4-3				question 4-4	ı r
		-				 	<u> </u>
paramètre	valeu	rs lues	valeurs interpolées	paramètres calculés	nbre de môles polluants spécifiques (npoll/kW.h)	émissions spécifiques (g/kW.h)	émissions kilomètriques (g/km)
0,00	supérieure					1	
%CO₂	inférieure			carbone total X=			1.000
%CO	supérieure						
7000	inférieure	L					
%HC	supérieure	***				ļ	
70110	inférieure						er mel melle (i o o mer delevere del (fort
%NOx	supérieure		<u></u>				
70INOX	inférieure						
Cse	supérieure			nmôles carburant=			
- Cse	inférieure						

DOCUMENT A RENDRE AVEC LA COPIE

DR5